Generative AI refers to deep-learning models that can take raw data—say, all of Wikipedia or the collected works of Rembrandt—and “learn” to generate statistically probable outputs when prompted. At a high level, generative models encode a simplified representation of their training data and draw from it to create a new work that’s similar, but not identical, to the original data.
Generative models have been used for years in statistics to analyze numerical data. The rise of deep learning, however, made it possible to extend them to images, speech, and other complex data types. Among the first class of AI models to achieve this cross-over feat were variational autoencoders, or VAEs, introduced in 2013. VAEs were the first deep-learning models to be widely used for generating realistic images and speech.
“VAEs opened the floodgates to deep generative modeling by making models easier to scale,” said Akash Srivastava, an expert on generative AI at the MIT-IBM Watson AI Lab. “Much of what we think of today as generative AI started here.”
Early examples of models, including GPT-3, BERT, or DALL-E 2, have shown what’s possible. In the future, models will be trained on a broad set of unlabeled data that can be used for different tasks, with minimal fine-tuning. Systems that execute specific tasks in a single domain are giving way to broad AI systems that learn more generally and work across domains and problems. Foundation models, trained on large, unlabeled datasets and fine-tuned for an array of applications, are driving this shift.
As to the future of AI, when it comes to generative AI, it is predicted that foundation models will dramatically accelerate AI adoption in enterprise. Reducing labeling requirements will make it much easier for businesses to dive in, and the highly accurate, efficient AI-driven automation they enable will mean that far more companies will be able to deploy AI in a wider range of mission-critical situations. For IBM, the hope is that the computing power of foundation models can eventually be brought to every enterprise in a frictionless hybrid-cloud environment.